Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.755
Filtrar
1.
Anal Chim Acta ; 1301: 342413, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553129

RESUMO

Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.


Assuntos
Sistemas Microfisiológicos , Organoides , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Microfluídica
2.
Expert Opin Drug Discov ; 19(5): 565-585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509691

RESUMO

INTRODUCTION: Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED: The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION: Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Descoberta de Drogas , Doenças Neurodegenerativas , Caenorhabditis elegans/efeitos dos fármacos , Animais , Humanos , Descoberta de Drogas/métodos , Desenvolvimento de Medicamentos/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/fisiopatologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/fisiopatologia
3.
Methods Mol Biol ; 2777: 135-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478341

RESUMO

Prostate cancer (PCa) is the second most common malignancy and the fifth leading cause of cancer death in men worldwide. Despite its prevalence, the highly heterogenic PCa has shown difficulty to establish representative cell lines that reflect the diverse phenotypes and different stages of the disease in vitro and hence hard to model in preclinical research. The patient-derived organoid (PDO) technique has emerged as a groundbreaking three-dimensional (3D) tumor modeling platform in cancer research. This versatile assay relies on the unique ability of cancer stem cells (CSCs) to self-organize and differentiate into organ-like mini structures. The PDO culture system allows for the long-term maintenance of cancer cells derived from patient tumor tissues. Moreover, it recapitulates the parental tumor features and serves as a superior preclinical model for in vitro tumor representation and personalized drug screening. Henceforth, PDOs hold great promise in precision medicine for cancer. Herein, we describe the detailed protocol to establish and propagate organoids derived from isolated cell suspensions of PCa patient tissues or cell lines using the 3D semisolid Matrigel™-based hanging-drop method. In addition, we highlight the relevance of PDOs as a tool for evaluating drug efficacy and predicting tumor response in PCa patients.


Assuntos
Detecção Precoce de Câncer , Neoplasias da Próstata , Masculino , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias da Próstata/patologia , Organoides
4.
J Vis Exp ; (204)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372384

RESUMO

In vitro drug sensitivity screens are important tools in the discovery of anti-cancer drug combination therapies. Typically, these in vitro drug screens are performed on cells grown in a monolayer. However, these two-dimensional (2D) models are considered less accurate compared to three-dimensional (3D) spheroid cell models; this is especially true for glioma stem cell lines. Cells grown in spheres activate different signaling pathways and are considered more representative of in vivo models than monolayer cell lines. This protocol describes a method for in vitro drug screening of spheroid lines; mouse and human glioma stem cell lines are used as an example. This protocol describes a 3D spheroid drug sensitivity and synergy assay that can be used to determine if a drug or drug combination induces cell death and if two drugs synergize. Glioma stem cell lines are modified to express RFP. Cells are plated in low attachment round well bottom 96 plates, and spheres are allowed to form overnight. Drugs are added, and the growth is monitored by measuring the RFP signal over time using the Incucyte live imaging system, a fluorescence microscope embedded in the tissue culture incubator. Half maximal inhibitory concentration (IC50), median lethal dose (LD50), and synergy score are subsequently calculated to evaluate sensitivities to drugs alone or in combination. The three-dimensional nature of this assay provides a more accurate reflection of tumor growth, behavior, and drug sensitivities in vivo, thus forming the basis for further preclinical investigation.


Assuntos
Glioma , Esferoides Celulares , Humanos , Camundongos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Linhagem Celular Tumoral , Esferoides Celulares/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia
5.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235578

RESUMO

Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/fisiologia , Qualidade de Vida , Modelos Animais de Doenças , Doenças Musculares/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Músculos
6.
J Biomed Mater Res A ; 112(4): 512-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37668192

RESUMO

Cardiovascular organ-on-a-chip (OoC) devices are composed of engineered or native functional tissues that are cultured under controlled microenvironments inside microchips. These systems employ microfabrication and tissue engineering techniques to recapitulate human physiology. This review focuses on human OoC systems to model cardiovascular diseases, to perform drug screening, and to advance personalized medicine. We also address the challenges in the generation of organ chips that can revolutionize the large-scale application of these systems for drug development and personalized therapy.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microfisiológicos , Humanos , Desenvolvimento de Medicamentos , Engenharia Tecidual/métodos , Avaliação Pré-Clínica de Medicamentos/métodos
7.
SLAS Discov ; 29(1): 34-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37573009

RESUMO

Hepatic metabolic stability is a crucial determinant of oral bioavailability and plasma concentrations of a compound, and its measurement is important in early drug discovery. Preliminary metabolic stability estimations are commonly performed in liver microsomal fractions. At the National Center for Advancing Translational Sciences, a single-point assay in rat liver microsomes (RLM) is employed for initial stability assessment (Tier I) and a multi-point detailed stability assay is employed as a Tier II assay for promising compounds. Although the in vitro and in vivo metabolic stability of compounds typically exhibit good correlation, conflicting results may arise in certain cases. While investigating one such instance, we serendipitously found vendor-related RLM differences in metabolic stability and metabolite formation, which had implications for in vitro and in vivo correlations. In this study, we highlight the importance of considering vendor differences in hepatic metabolic stability data and discuss strategies to avoid these pitfalls.


Assuntos
Descoberta de Drogas , Fígado , Ratos , Animais , Fígado/metabolismo , Descoberta de Drogas/métodos , Microssomos Hepáticos/metabolismo , Disponibilidade Biológica , Avaliação Pré-Clínica de Medicamentos/métodos
8.
Biosens Bioelectron ; 247: 115912, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096721

RESUMO

The monitoring of acetylcholinesterase (AChE) activity and the screening of its inhibitors are significance of the diagnosis and drug therapy of nervous diseases. A metal ions-mediated signal amplification strategy was developed for the highly sensitive and multicolor assay of AChE activity and visually screening its drug inhibitors. After the specific reaction between AChE and acetylthiocholine (ATCh), the hydrolysis product thiocholine (TCh) can directly and decompose the α-FeOOH nanorods (NRs) to release amounts of Fe2+, which was regarded as Fenton reagent to efficiently catalyze H2O2 to produce ·OH. Then, the as-formed ·OH can further largely shorten the gold nanobipyramids (Au NBPs), generating a series of palpable color variations. The linear range for AChE activity was 0.01-500.0 U/L with the limit of detection as low as 0.0074 U/L. The vivid visual effects could be easily distinguished for the multicolor assay of AChE activity by naked eye in visible light. To achieve the point-of-care testing, Au NBPs were further assembled on polymeric electrospun nanofibrous films (ENFs) surface as test strips for the easy-to-use test of AChE activity by RGB values with a smartphone. Fascinatingly, this proposed strategy can be used for the visual screening AChE inhibitors or non-inhibitors. Comparing with the clinical drugs (rivastigmine tartrate, and donepezil), some natural alkaloids such as evodiamine, caffeine, camptothecin, and berberine hydrochloride were selected as inhibitor modes to confirm the drug screening capability of this method. This proposed strategy may have great potential in the other disease-related enzymatic biomarkers assay and the rapid screening of drug therapy.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Acetilcolinesterase , Peróxido de Hidrogênio , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas Biossensoriais/métodos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/análise , Testes Imediatos
9.
Methods Enzymol ; 690: 211-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37858530

RESUMO

Fragment-based drug discovery (FBDD) has brought several drugs to the clinic, notably to target proteins once considered to be challenging, or even undruggable. Screening in FBDD relies upon observing and/or measuring weak (millimolar-scale) binding events using biophysical techniques or crystallographic fragment screening. This latter structural approach provides no information about binding affinity but can reveal binding mode and atomic detail on protein-fragment interactions to accelerate hit-to-lead development. In recent years, high-throughput platforms have been developed at synchrotron facilities to screen thousands of fragment-soaked crystals. However, using accessible manual techniques it is possible to run informative, smaller-scale screens within an academic lab setting. This chapter describes general protocols for home laboratory-scale fragment screening, from fragment soaking through to structure solution and, where appropriate, signposts to background, protocols or alternatives elsewhere.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Cristalografia por Raios X , Descoberta de Drogas/métodos , Proteínas , Avaliação Pré-Clínica de Medicamentos/métodos
10.
J Biol Chem ; 299(12): 105366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863264

RESUMO

Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.


Assuntos
Proteínas de Arabidopsis , Cisteína Dioxigenase , Inibidores Enzimáticos , Bibliotecas de Moléculas Pequenas , Humanos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Cisteína Dioxigenase/antagonistas & inibidores , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Plântula/efeitos dos fármacos , Anaerobiose , Ativação Enzimática/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia
11.
Toxicol Sci ; 196(2): 152-169, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37702017

RESUMO

The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.


Assuntos
Dermatite Fototóxica , Pele , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Irritantes , Alternativas aos Testes com Animais
12.
Inorg Chem ; 62(35): 14279-14290, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37616561

RESUMO

In the current work, a novel vanadotungstate compound, (C6H9N2)4[V2W4O19]·2H2O (1), is isolated by a simple stepwise synthesis method and characterized by a combined experimental and computational study. Molecular docking is conducted for the first time for this kind of substituted Lindqvist polyoxometalates to elucidate for potential antidiabetic activity. Hence, the modeling results revealed a significant docking score of the reported compound to bind to the active sites of α-glucosidase with the lowest binding energy of -5.7 kcal/mol, where the standard drug acarbose (ACB) had -4.6 kcal/mol binding energy. The stability of binding was enhanced by strong H-bonding, van der Waals, and electrostatic interactions occurring in the three-dimensional (3D) supramolecular network of polyanionic vanadotungstate subunits templated with organic moieties as shown by X-ray diffraction and Hirshfeld analyses. Furthermore, density functional theory (DFT) calculations supported with photophysical measurements are also discussed to predict the most chemical and biological reactivity. In this view, the complete description of electronic and biological features of (1) is enhanced by determination of the highest occupied molecular orbital (HOMO)/least unoccupied molecular orbital (LUMO) energy, electronic density, ionization potential, electron affinity, etc. These chemical descriptors, intermolecular interactions, docking score, and binding free energy estimation are essential in understanding the reactivity of this bioactive compound offering potential inhibition of the α-glucosidase enzyme.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Hipoglicemiantes , Hipoglicemiantes/química , Simulação por Computador , Compostos de Tungstênio/química , Polímeros/química , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Estrutura Terciária de Proteína
13.
PLoS Negl Trop Dis ; 17(8): e0011343, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540716

RESUMO

Echinococcus multilocularis and E. granulosus s.l. are the causative agents of alveolar and cystic echinococcosis, respectively. Drug treatment options for these severe and neglected diseases are limited to benzimidazoles, which are not always efficacious, and adverse side effects are reported. Thus, novel and improved treatments are needed. In this study, the previously established platform for E. multilocularis in vitro drug assessment was adapted to E. granulosus s.s. In a first step, in vitro culture protocols for E. granulosus s.s. were established. This resulted in the generation of large amounts of E. granulosus s.s. metacestode vesicles as well as germinal layer (GL) cells. In vitro culture of these cells formed metacestode vesicles displaying structural characteristics of metacestode cysts generated in vivo. Next, drug susceptibilities of E. multilocularis and E. granulosus s.s. protoscoleces, metacestode vesicles and GL cells were comparatively assessed employing established assays including (i) metacestode vesicle damage marker release assay, (ii) metacestode vesicle viability assay, (iii) GL cell viability assay, and (iv) protoscolex motility assay. The standard drugs albendazole, buparvaquone, mefloquine, MMV665807, monepantel, niclosamide and nitazoxanide were included. MMV665807, niclosamide and nitazoxanide were active against the parasite in all four assays against both species. MMV665807 and monepantel were significantly more active against E. multilocularis metacestode vesicles, while albendazole and nitazoxanide were significantly more active against E. multilocularis GL cells. Albendazole displayed activity against E. multilocularis GL cells, but no effects were seen in albendazole-treated E. granulosus s.s. GL cells within five days. Treatment of protoscoleces with albendazole and monepantel had no impact on motility. Similar results were observed for both species with praziquantel and its enantiomers against protoscoleces. In conclusion, in vitro culture techniques and drug screening methods previously established for E. multilocularis were successfully implemented for E. granulosus s.s., allowing comparisons of drug efficacy between the two species. This study provides in vitro culture techniques for the reliable generation of E. granulosus s.s. metacestode vesicles and GL cell cultures and describes the validation of standardized in vitro drug screening methods for E. granulosus s.s.


Assuntos
Echinococcus granulosus , Echinococcus multilocularis , Animais , Albendazol/farmacologia , Albendazol/uso terapêutico , Niclosamida/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos
14.
Adv Healthc Mater ; 12(26): e2300842, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402278

RESUMO

Circulating tumor cells (CTCs) are established as distinct cancer biomarkers for diagnosis, as preclinical models, and therapeutic targets. Their use as preclinical models is limited owing to low purity after isolation and the lack of effective techniques to create 3D cultures that accurately mimic in vivo conditions. Herein, a two-component system for detecting, isolating, and expanding CTCs to generate multicellular tumor spheroids that mimic the physiology and microenvironment of the diseased organ is proposed. First, an antifouling biointerface on magnetic beads is fabricated by adding a bioinert polymer layer and conjugation of biospecific ligands to isolate cancer cells, dramatically enhancing the selectivity and purity of the isolated cancer cells. Next, the isolated cells are encapsulated into self-degradable hydrogels synthesized using a thiol-click approach. The hydrogels are mechanochemically tuned to enable tumor spheroid growth to a size greater than 300 µm and to further release the grown spheroids while retaining their tumor-like characteristics. In addition, drug treatment highlights the need for 3D culture environments rather than conventional 2D culture. The designed biomedical matrix shows potential as a universal method to ensure mimicry of in vivo tumor characteristics in individual patients and to improve the predictability of preclinical screening of personalized therapeutics.


Assuntos
Células Neoplásicas Circulantes , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Polímeros/farmacologia , Esferoides Celulares , Hidrogéis/farmacologia , Microambiente Tumoral
15.
J Pharmacol Toxicol Methods ; 123: 107300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524151

RESUMO

This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2022 Safety Pharmacology Society (SPS) and Canadian Society of Pharmacology and Therapeutics (CSPT) joint meeting held in Montreal, Quebec, Canada. The meeting also generated 179 abstracts (reproduced in the current volume of JPTM). As in previous years the manuscripts reflect various areas of innovation in SP including a comparison of the sensitivity of cross-over and parallel study designs for QTc assessment, use of human-induced pluripotent stem cell (hi-PSC) neuronal cell preparations for use in neuropharmacological safety screening, and hiPSC derived cardiac myocytes in assessing inotropic adversity. With respect to the latter, we anticipate the emergence of a large data set of positive and negative controls that will test whether the imperative to miniaturize, humanize and create a high throughput process is offset by any loss of precision and accuracy.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacologia , Humanos , Canadá , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Farmacologia/métodos , Congressos como Assunto
16.
Biotechnol Lett ; 45(9): 1073-1092, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421554

RESUMO

The drug development process involves a variety of drug activity evaluations, which can determine drug efficacy, strictly analyze the biological indicators after the drug action, and use these indicators as the preclinical drug evaluation criteria. At present, most of the screening of preclinical anticancer drugs mainly relies on traditional 2D cell culture. However, this traditional technology cannot simulate the tumor microenvironment in vivo, let alone reflect the characteristics of solid tumors in vivo, and has a relatively poor ability to predict drug activity. 3D cell culture is a technology between 2D cell culture and animal experiments, which can better reflect the biological state in vivo and reduce the consumption of animal experiments. 3D cell culture can link the individual study of cells with the study of the whole organism, reproduce in vitro the biological phenotype of cells in vivo more greatly, and thus predict the activity and resistance of anti-tumor drugs more accurately. In this paper, the common techniques of 3D cell culture are discussed, with emphasis on its main advantages and application in the evaluation of anti-tumor resistance, which can provide strategies for the screening of anti-tumor drugs.


Assuntos
Antineoplásicos , Animais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas de Cultura de Células em Três Dimensões , Tecnologia
17.
Nat Commun ; 14(1): 3168, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280220

RESUMO

High throughput drug screening is an established approach to investigate tumor biology and identify therapeutic leads. Traditional platforms use two-dimensional cultures which do not accurately reflect the biology of human tumors. More clinically relevant model systems such as three-dimensional tumor organoids can be difficult to scale and screen. Manually seeded organoids coupled to destructive endpoint assays allow for the characterization of treatment response, but do not capture transitory changes and intra-sample heterogeneity underlying clinically observed resistance to therapy. We present a pipeline to generate bioprinted tumor organoids linked to label-free, time-resolved imaging via high-speed live cell interferometry (HSLCI) and machine learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D structures with unaltered tumor histology and gene expression profiles. HSLCI imaging in tandem with machine learning-based segmentation and classification tools enables accurate, label-free parallel mass measurements for thousands of organoids. We demonstrate that this strategy identifies organoids transiently or persistently sensitive or resistant to specific therapies, information that could be used to guide rapid therapy selection.


Assuntos
Bioimpressão , Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Organoides/metabolismo , Neoplasias/patologia , Interferometria
18.
J Enzyme Inhib Med Chem ; 38(1): 2220558, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357755

RESUMO

Heat shock protein 90 (Hsp90) is considered an attractive therapeutic target for cancer treatment due to its high expression in many cancers. In this study, four potent Hsp90 inhibitors (HPs 1-4) were identified using structure-based virtual screening. Among them, HP-4 exhibited the most potent inhibitory effects (IC50 = 17.64 ± 1.45 nM) against the Hsp90 protein, which was about 7.7 times stronger than that of MPC-3100 (a positive inhibitor targeting Hsp90). In vitro cytotoxicity assay suggested that HP-4 could effectively inhibit the proliferation of a series of tumour cells, including HCT-116, HeLa, A549, A2780, DU145, HepG2 and A498. Furthermore, in vivo assay displayed that HP-4 had significant anti-tumour effects on HCT-116 cell-derived xenograft models. These data demonstrate that HP-4 could be a potential lead compound for the further investigation of anti-tumour drugs.


Assuntos
Descoberta de Drogas , Proteínas de Choque Térmico HSP90 , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Farmacóforo , Humanos , Animais , Camundongos
19.
Methods Mol Biol ; 2644: 287-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37142929

RESUMO

During the preclinical stages of the drug discovery process, cell viability assays are fundamental tools for studying the phenotypic properties and overall health of cells following in vitro drug sensitivity screens. Therefore, it is important to optimize your viability assay of choice to obtain reproducible and replicable results, as well as use relevant drug response metrics (e.g., IC50, AUC, GR50, and GRmax) to identify candidate drugs for further evaluation in vivo. Herein, we used the resazurin reduction assay which is a quick, cost-effective, simple-to-use, and sensitive method for examining the phenotypic properties of cells. Using the MCF7 breast cancer cell line, we provide a detailed step-by-step protocol for optimizing drug sensitivity screens using the resazurin assay.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Sobrevivência Celular , Descoberta de Drogas/métodos , Células MCF-7 , Avaliação Pré-Clínica de Medicamentos/métodos
20.
Cell Stem Cell ; 30(5): 571-591, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146581

RESUMO

Human pluripotent stem cells (hPSCs) and three-dimensional organoids have ushered in a new era for disease modeling and drug discovery. Over the past decade, significant progress has been in deriving functional organoids from hPSCs, which have been applied to recapitulate disease phenotypes. In addition, these advancements have extended the application of hPSCs and organoids for drug screening and clinical-trial safety evaluations. This review provides an overview of the achievements and challenges in using hPSC-derived organoids to conduct relevant high-throughput, high-contentscreens and drug evaluation. These studies have greatly enhanced our knowledge and toolbox for precision medicine.


Assuntos
Células-Tronco Pluripotentes , Humanos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...